Les nombres premiers : Terminale S
(Dom)
Cours Terminale S Les nombres premiers Extrait de Pour la Science n° 251 Septembre 1998 : La factorisation des grands nombres (Johannes Buchmann) Le nombre 114 381 625 757 888 867 669 235 779 976 146 612 010 218 296 721 242 362 562 561 842 935 706 935 245 733 897 830 597 123 563 958 705 058 989 075 147 599 290 026 879 543 541 est le produit de deux nombres premiers ; lesquels ? Martin Gardner posa cette question aux lecteurs de Pour la Science en octobre 1977. dans sa rubrique de «Jeux mathématiques», mais une réponse ne fut donnée que 16 ans plus tard : en avril 1994, Paul Leyland, de l'Université d'Oxford. Michael Graff, de l'Université de l'lowa, et Derek Atkins, de l'Institut de technologie du Massachusetts, identifièrent les deux facteurs, après avoir distribué des parties de la tâche, grâce au réseau Internet, à quelque 600 volontaires, qui laissèrent fonctionner sur leurs ordinateurs, pendant de nombreuses nuits, le programme écrit par Arjen Lenstra, du Centre de recherches de la Société Bell Communications. La multiplication de deux nombres, même très grands, n'est pas compliquée : avec du papier et un crayon, on calcule le produit de deux nombres de 65 chiffres en une heure environ ; par ordinateur, le calcul est immédiat. En revanche, l'opération inverse, c'est-à-dire l'identification des facteurs d'un produit, est très difficile, même avec les calculateurs les plus rapides. (...